
52 Issue 150 January 2003 CIRCUIT CELLAR® www.circuitcellar.com

nstrument
designers seldom

talk to IT depart-
ments. But, this will

change with the increased use of
extensible markup language (XML)
coded data. Most IT departments have
decided to implement XML through-
out their companies, which means
that XML must extend to the requests
sent to instruments and the data gen-
erated by them.

Consequently, instrument manufac-
turers must start polling their poten-
tial customers and speaking to IT
department database designers. In
many cases, database designers have
already defined a schema for their
XML coded data. A manufacturer can-
not economically customize every
instrument, but it’s possible to devise
a common set of XML tags that are
easily mapped to the existing database
schema. This collaboration must

broaden to competitors and other man-
ufacturers supplying instrumentation to
the same industry. To date, only a few
industries have created industry-wide
XML standards like this.

The information coded with XML
doesn’t have to be data; it can
include actions and related parame-
ters similar to remote procedure calls
(RPC). Now, IT departments have the
ability to control and manage devices
on the plant floor.

XML BASICS
XML provides a processor-independ-

ent way of encoding data for inter-
change between diverse systems. Like
hypertext markup language (HTML),
XML is derived from standard general-
ized markup language (SGML); howev-
er, XML is simplified for easier machine
parsing. Unlike HTML, XML has no
predefined meanings associated with
its elements or tags. Instead, it’s a set
of rules (a syntax) for constructing tag-
delimited information. Individual
XML documents can use different ele-
ment definitions to encode informa-
tion from dissimilar data environ-
ments. A set of element definitions to
encode data from a particular data envi-
ronment is called a “schema.”

Different schemas or element defi-
nitions that use XML syntax are being
developed for diverse application envi-
ronments. Some of these schemas
include vocabularies for chemical
engineering, vector graphics, electron-
ic invoicing, weather information, and
spreadsheet formulas. A specific XML
schema (tag set definition) can be
defined by one organization and pub-
lished for others. For example,
Microsoft has defined a set of XML
tags for exchanging spreadsheet and
word processing documents with the
Office 2000 and Office XP product
suites. Industry standards groups
sometimes get together to define ele-

Embedded XML

i
The popularity of XML
is growing. As a
result, engineers must
work closely with IT
departments to meet
data management
requirements. The
task can be difficult,
but there are ways
you can help enhance
data flow without hav-
ing to customize each
device you design.

Edward Steinfeld

FEATURE
ARTICLE

Make Your Customer’s IT Department
Happy

Incorrect (acceptable as HTML) Correct (required by XML)

<tag>data <tag>data</tag>
<tag1><tag2>data</tag1></tag2> <tag1><tag2>data</tag2></tag1>
<tag1 arg1=abc>data</tag1> <tag1 arg1="abc">data</tag1>

Table 1—It’s important to note the differences between XML and HTML. When comparing the strict XML format-
ting to HTML, remember that XML is case sensitive and attributes within tags require quotation marks.

Circuit Cellar, the Magazine for Computer Applications. Reprinted
by permission. For subscription information, call (860) 875-2199, or
www.circuitcellar.com. Entire contents copyright ©2001 Circuit
Cellar Inc. All rights reserved.

www.circuitcellar.com CIRCUIT CELLAR® Issue 150 January 2003 53

and the IT department. Special embed-
ded XML parser/framers are used in
the testing instruments.

XML/HTML COMPARISON
As I explained earlier, HTML and

XML were derived from the tag descrip-
tion language SGML. There are differ-
ences, though. Both SGML and HTML
describe the format of the data; alterna-
tively, XML describes the content of
the data. Unlike XML tags, whose defi-
nitions are up to the programmer (and
sometimes the industry), all SGML and
HTML tags are predefined.

Before I continue with this compari-
son, I want to familiarize you with
XML’s key features: all elements must
be balanced with a start tag and end
tag, or they must use a special self-ter-
minating format; nesting is strictly
enforced; and attributes within tags
always use quotes. Finally, remember
that XML is case-sensitive; therefore,
for example, <TAG>, <tag>, and
<Tag> are different and could have
different meanings (see Table 1).

XML syntax provides a free-format
interchange of data. The definitions of
the schema can be documented in a
number of ways, allowing communi-
ties of users other than the original
definer to understand what the design-
er of the schema intended. You can
document schemas with SGML DTD
language, W3C XML schema defini-
tion language, or other techniques
using XML primitives. The XMLSPY
suite is an inexpensive program that
can help with XML schemas. It’s an

ment sets. Vector graphics and chemi-
cal engineering groups are currently
developing XML schema standards.

Two functions, or programs, are
required to convert a schema-defined
document into internal data and vice
versa. A parser is a program that reads
an XML document and provides
access to the data inside the XML
tags. On the other hand, a framer is a
program that takes internal data and
formats it into an XML document.

HOSPITAL DATA FLOW
From the time a doctor decides to

test a patient’s blood to the time that
data is actually provided, the requests
for and results concerning the tests
pass through a number of steps.
Telling the appropriate instruments
what tests to perform is one of the
important steps in the process.

After a set of tests is chosen, the doc-
tor either enters the requests into a
computer or has a nurse do so (see
Figure 1). The requests are XML framed
and sent to the hospital’s IT computer.
From there, the requests are sent to the
nurse’s station on the floor where the
patient is located. A pick-up list is
printed so the nurses know which
patients are having tests done. In addi-
tion, they’re provided with a bar-coded
labels to attach to the vials of blood.

The IT computer also sends the
requests to the appropriate laborato-
ries. The pathology laboratory receives
the information for blood tests. The
data that’s sent to the lab includes
patient identification material and
specific test information.

The IT computer does not
specify which instruments will
perform the tests, and the same
information is sent to all of the
instruments. Most embedded
XML parsers will ignore data
framed by tags that are not iden-
tified for them. On the other
hand, they’ll accept all of the
data within the tags they under-
stand. This means the same set
of data records can be sent to
every test instrument in the
pathology lab (see Listing 1).
The blood chemistry tester will
accept all tests enclosed by the
ChemTest tag (i.e., blood urea
nitrogen, or BUN test), but will
ignore test requests enclosed by the
CellTest tag. The blood cell analyzer
will accept both the leukocyte_count
(i.e., total white blood cell count test)
and diff (i.e., the percentage difference
of each type of white cell) test requests.

All instruments will accept the
patient identification data. In the
meantime, the nurse collects the flu-
ids and carries them to the lab. After
the tests are completed, the results
and patient identification information
are sent to the hospital’s IT computer.
A copy of the results is delivered to
the nurse’s station to be printed or dis-
played. Another copy of the results is
forwarded to the requesting doctor’s
computer. Finally, a copy of the tests
is sent to the billing and insurance
department’s computer.

Generalized XML parser/framers are
used in the computers for the doctor
nurse’s station, billing department,

Figure 1—Something as simple as a routine blood test involves
a lot of communication between numerous people and devices.
In this example, it’s XML framed data that’s flowing from doctors
to instruments and back.

Nurse’s station

Nurse prints barcodes
and picks up list of

patient and samples
to be collected

Nurse gets blood
samples and
delivers to lab

Blood chemistry and
cell analysis

test instruments
(embedded systems)

Hospital’s
central computer

Billing and
insurance
computer

Doctor’s
computer

Doctor orders
blood tests

Requests
Results

Listing 1—XML code is sent to a number of devices. Each device will recognize only the XML tags that
are defined in its ObjectDefs.o. The other tags are ignored.

<PatientTest>
<Patient>

<FirstName>John</FirstName>
<MiddleName>Wesley</MiddleName>
<LastName>Jones</LastName>
<idNumber>572-89-2387</idNumber>

</Patient>
<PathologyLab>

<ChemTest>BUN</ChemTest>
<CellTest>leukocyte_count</CellTest>
<CellTest>diff</CellTest>

</PathologyLab>
</PatientTest>

54 Issue 150 January 2003 CIRCUIT CELLAR® www.circuitcellar.com

general-purpose XML parser are
prohibitive. An embedded device
doesn’t need a dynamic tag set or
vocabulary, because each embed-
ded tool is typically a dedicated,
single-purpose device. Allegro
provides the RomXML parser/
framer toolkit for such devices.

An embedded XML parser effi-
ciently translates data between
the XML syntax and an internal
format (e.g., a C structure).
Allegro’s RomXML parser/
framer provides a lightweight
translation between predefined
C language structures and XML-

based representations.
By defining the rules for data trans-

lation external to the embedded
device, you can build a small-foot-
print, special-purpose XML translator
that uses dedicated vocabulary defini-
tions to reduce the size of code and
data storage. This permits the embed-
ded device to move data to other

XML editor, schema designer, and
more. You may download a 30-day
evaluation copy from the XMLSPY
web site (www.xmlspy.com).

With some schema definition tech-
niques, a general-purpose parser can
read a DTD or schema file that con-
tains the definitions it needs to parse a
particular XML document. A parser
that checks an XML document for cor-
rect XML syntax is said to be check-
ing for well-formed XML documents.
A parser that checks XML documents
against an external DTD definition is
said to be a validating parser. Because
embedded systems (as well as devices
and instruments) and their XML tags
are predefined, the schema definitions
can be handled outside the embedded
system, consequently reducing the
system requirements in the device.

XML documents are both human and
machine-readable. The same schema
can be defined using multiple tech-
niques. Allegro Software Development’s
RomXML parser and framer use a spe-
cial schema definition language called
RxSchema. This definition language is
similar to the W3C XML schema defi-
nition that uses XML elements to
define the XML schema. RxSchema
provides control of the internal storage
definition, which is useful in limited-
resource embedded environments.

EMBEDDED PARSER/FRAMER
It’s useful for an embedded device to

exchange XML-based information with
other embedded devices, general-pur-
pose desktop workstations, and main-
frame computers. However, the pro-
cessing and memory requirements for a

machines in an XML-based standard
format without carrying the overhead
of general-purpose XML tools. The
RomXML parser/framer fits in about
10 KB of memory in the device.

Additionally, the RomXML toolkit
uses a set of XML tags to define an
XML object. The XML object is defined
with the C internal storage structures
and the XML tag set that’s used for the
XML-based data interchange.

The RomXML TagBuilder utility
program analyzes the RomXML object
definitions and produces an object
definition file in C language (see
Figure 2a). This is compiled with the
RomXML parser/framer code (see
Figure 2b). The object definition file
contains the transformation tables
that the runtime RomXML code uses
to perform specific translations for
each XML object between the defined
C structures and XML tag set.

The RomXML TagBuilder program
uses standard C library calls for read-

ObjectDefs.xml ObjectDefs.cTagBuilder

Figure 2a—Using the TagBuilder utility, you can create XML
object definitions outside the device. b—XML object definitions
are compiled and linked with the application, RomXML runtime
library, and real-time operating system (RTOS).

ObjectDefs.c

RomXML Parser/
framer with
device code

RomXML
runtime
library

Application,
OS, other
libraries

Listing 2—You can transmit different types of information with XML. This portion of an XML framed data
transfer provides a few examples.

<?xml version="1.0"?>
<datarecord>

<Patient OutPatient="false">
<idNumber>572892387</idNumber>
<name>

<firstname>John</firstname>
<middle>Wesley</middle>
<lastname>Jones</lastname>

</name>
</Patient>
<field1>23</field1>
<field2>1026</field2>
<switch>192.23.45.67</switch>

</datarecord>
**
You can store the XML framed data in an embedded device using C.
**
typedef struct {

Patient sPatient;
Unsigned8 Field1;
Unsigned32 Field2;
char SwitchAddress[4];

} myRecord;
typedef struct {

PatientName sName;
Unsigned32 Number;
Unsigned8 outpatient;

} Patient;
typedef struct {

char FirstName[20];
char MiddleName[20];
char LastName[32];

} PatientName;

a)

b)

www.circuitcellar.com CIRCUIT CELLAR® Issue 150 January 2003 55

ing and writing the XML object defi-
nition files. It’s delivered in exe-
cutable form as a Windows program
or in source format so you can host it
in a particular UNIX environment.

The RomXML runtime code is a
series of calls that you can use to
handle the XML objects. Therefore,
you can pass an incoming XML datas-
tream and XML object definition to
the RomXML program, and it will
parse the XML datastream into a C
structure (see Figure 3a).

Furthermore, you can pass a C
structure and the XML object defini-
tion to the RomXML program and it
will prepare an XML datastream by
framing the data from the C language
structure with the appropriate XML
tags (see Figure 3b).

RomXML software works directly
with a stand-alone embedded applica-
tion or other Allegro products. XML
datastreams are transmitted to and
from other systems as an HTTP object
with the RomPager embedded web
server or RomWebClient embedded
HTTP client. The XML datastreams
are also sent and received as e-mail
attachments via the RomMailer or
RomPOP embedded e-mail programs.

XML TRANSLATION
An XML document contains XML

syntax elements that describe the

structure of the data and underlying
data. The XML document itself does
not contain any information about how
to store the data in a given device.

Listing 2 shows an example of an
XML document that contains some
information about a customer. The
XML schema or tag set used in this
particular document provides a
framing of the data that can be
clearly understood by both you and
a machine. In order for an embed-
ded device to use the data in this
XML document, it might decide to
store the underlying data in a series
of C structures.

The RomXML parser/framer pro-
vides an efficient mechanism for
translating data between XML and
internal C structure representations
of the data. The RxSchema language
is used to describe the relationships
between the XML document and C
structures. Because XML is a string
language that expresses structure (not
data types), the RxSchema language is
also used to tell the embedded device
that the <field2> tag frames an
unsigned 32-bit integer value, and the
<switch> tag frames a value
expressed in dotted-decimal notation.

TagBuilder UTILITY
The RxSchema language is expressed

in XML via a notation similar to the

Listing 3—RomXML embedded XML uses an XML-based schema to define the relationships between the
XML data tags and the embedded C program data structure. The schema is used to predefine these relation-
ships; therefore, resources aren’t used during runtime. I compiled this schema using the TagBuilder utility,
and then linked it to the embedded application.

<?xml version="1.0"?>
<objectList>
<object name="myObject">
<header><?xml version="1.0"?></header>
<struct sname="myRecord" fname="myRecord" xname="datarecord">

<struct sname="Cust" fname="sCust" xname="Patient">
<attribute fname="outpatient" xname="OutPatient" type="boolstr"/>

<element fname="Number" xname="idNumber" type="Unsigned32"/>
<struct sname="CustName" fname="sName" xname="name">

<element fname="FirstName" xname="firstname" type="string.ansi" size="20"/>
<element fname="MiddleName" xname="middle" type="string.ansi" size="20"/>
<element fname="LastName" xname="lastname" type="string.ansi" size="32"/>

</struct>
</struct>

<element fname="Field1" xname="field1" type="Unsigned8"/>
<element fname="Field2" xname="field2" type="Unsigned32" default="51"/>
<element fname="SwitchAddress" xname="switch" type="dotform" size="4"/>
</struct>
</object>
</objectList>

www.circuitcellar.com CIRCUIT CELLAR®

databases, parsers, documenta-
tion, and the like. Few compa-
nies provide an embedded
XML parser/framer product.
Allegro and NetSilicon are
two. Many RTOS vendors,
such as Green Hills Software
and OSE, provide embedded
XML from third parties.
Others, like Wind River
Systems, provide pointers to
compatible offerings. I suggest
that you go to your favorite
RTOS provider to search for

XML products and information.
Allegro’s embedded XML toolkit

products are provided as ANSI C
sources. The toolkit sells for $15,000,
but it’s royalty free for runtime code
sold on a single platform or product.
This is typical of many network
toolkits meant for embedded prod-
ucts. So, make your customer’s IT
department happy. Implement XML
in the next product you design. I

RESOURCE
XML information
www.xml.com

SOURCES
RomXML Embedded XML toolkit
Allegro Software Development
Corp.
(978) 264-6600
www.allegrosoft.com

XMLSPY
Altova, Inc.
(978) 816-1600
www.xmlspy.com

Edward Steinfeld has more than 25
years of experience in real-time and
embedded computing. He began his
career as a programmer, writing code
and designing hardware to test hybrid
circuit boards. His international expe-
rience includes a stint in Hong Kong
as a Far East channels manager for
international OEM sales in the Pacific
Rim and Europe. Currently, Ed pro-
vides market research, planning, and
services to the embedded computing
industry. You may reach him at
edward@go-embedded.com.

W3C XML schema definition lan-
guage. The definitions of the XML
document that will be parsed and
framed along with the definitions of
the internal C structure are compiled
by the TagBuilder utility. This utility
provides a compact internal represen-
tation of the translation definitions.

After linking the compiled defini-
tions with the RomXML runtime
library and the rest of the embedded
device software, the device can read
an XML document and call the
RomXML parser to translate the doc-
ument into the internal format. When
the device is ready to create an XML
document, it then calls the RomXML
framer to translate the internal for-
mat into the document.

The XML document that contains
the set of RxSchema definitions for
the sample C language structures
and XML document is depicted in
Listing 3. This example is a modi-
fied subset of an example taken
from the RomXML programming
reference manual.

AVAILABLE NOW
Network-enabled devices become

easier to deploy and interoperate
when IT departments use embedded
XML parsers and framers. When
you’re designing a device, you can
implement the more general XML
products, but the additional required
resources can make the device too
expensive to produce. And, because
embedded or stand-alone products are
usually single-purpose devices, there’s
no need for dynamic tag resolution.

Results tend to vary when search-
ing the ’Net for “embedded XML.”
You’ll get hits for embedded XML

Record.xml

RomXML
parser

ObjectDefs.o

Internal C
structure

Figure 3a—Incoming XML-framed records are scanned by the
RomXML parser program, predefined object definitions, and the
data inserted in the appropriate C data structures. b—Data in the
device is XML-framed by the RomXML framer and the predefined
XML object definitions.

Internal C
structure

NewRecord.xml

RomXML
framer

ObjectDefs.o

a)

b)

http://www.xml.com
http://www.allegrosoft.com
http://www.xmlspy.com

